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Abstract-Multicomponent mass transfer ;accompanied by instantaneous chemical reactions in a small drop has 
been modeled and simulated for the case where two different solutes diffuse from a continuous phase into the drop 
and react rapidly with a third reactant in the drop. The computational results obtained by Galerkin's finite element 
method are reported in terms of concentration profiles, the locations of reaction front, the cumulative mass flux, 
and the enhancement factor. The effects of physical parameters, such as diffusivities of the solutes and the reactant, 
the interracial concentration of solutes, and the relative a,nount of the reactant, on the calculated quantities are discus- 
sed. 
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INTRODUCTION 

The simultaneous mass transfer and chemical reaction of solu- 
ble solutes in a rigid drop are of practical importance in various 
industrial gas-liquid and liquid-liquid contacting operations such 
as spray absorption, liquid-liquid extraction, separation using liq- 
uid membranes, and atmospheric scavenging. Numerous studies 
related to mass transfer accompanied with reversible or irreversi- 
ble and isothermal or nonisothermal reactions in a simple geome- 
try have been reported [1-4]. However, mass transfer to a drop 
or a bubble with chemical reactions has not been sufficiently inves- 
tigated. This is because mass transfer to a drop is more restricted 
to solve than mass transfer to a simple geometry due to nonlin- 
earity of the moving boundary. Ruckenstein et al. [5] studied 
mass transfer from a drop, accompanied by a first order reaction 
and obtained the concentration profile in the continuous phase 
and the rate of mass transfer, using a similarity solution scheme. 
Dang and Ruckenstein [-63 obtained unsteady concentration pro- 
file and the mass transfer rate from a single or binary component 
drop with/without reaction for relatively large Reynolds number 
flow. Ramachandran et al. [7] investigated mass transfer into the 
core of drops with a liquid-phase first-order chemical reaction, 
using the boundary layer concept for the gas phase and film 
theory for the liquid phase. They showed their results in terms 
of concentration distribution of the gas solute, but did not report 
the parametric study on enhancement factor. Kleinstreuer et al. 
[-8] extended Ramachandrans' work to the case of adsorption in 
string of circulating drops. Dutta et al. [9] studied the simplest 
binary mass transfer in which a single gas solute diffuses into 
a liquid drop and reacts rapidly with a reactant present in the 
drop, using the finite difference method. They reported the reac- 
tion front positions, the rate of mass transfer, and the enhance- 
ment factor for different system parameters. 

In many industrial situations, diffused solutes into a drop usual- 
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ly react instantaneously with a reactant in the drop. Therefore, 
there are two regions inside the drop, each containing only the 
solutes or the reactant. The boundary between these two regions 
is called reaction front and its location moves away from the sur- 
face of the drop toward the center of the drop as the reactions 
proceed. 

Despite its practical importance, this moving-boundary problem 
is not understood satisfactorily for the general case in industrial 
processes, where more than one solute diffuse and react rapidly 
with a reactant in a drop. The goal of the present work is to 
theoretically analyze this multicomponent moving-boundary prob- 
lem and develop a mathematical model. The developed mathema- 
tical model is simulated for absorption of two solutes from the 
continuous phase into the drop and instantaneous reactions with 
the third chemical component existing in the drop. The results 
of this study include concentration profiles of solutes and the 
reactant, reaction front position, and the cumulative mass flux 
and the enhancement factor of each diffusing solute for different 
values of the system parameters. For the development of the mod- 
el proposed in this study, it is assumed that the drop is so small 
that it is considered to behave as a rigid particle [10]. 

MODEL DEVELOPMENT 

Let us assume that the following irreversible instantaneous reac- 
tions occur between n diffusing solutes, A, B, '" ,  IN, from the contin- 
uous phase into the non-circulating drop and a reactant, T, exis- 
ting in the drop. 

A+yAT products 

B + yBT - -  products 

N + yNT products (1) 

where Yi is the ratio of stoichiometry coefficients of T to i. There 
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are n chemical reactions described by the above equations be- 
cause n diffusing solutes react with T independently. The reac- 
tions occur at the reaction front moving from the surface of the 
drop to its center. In the following mathematical treatment, it 
is assumed that the bulk concentrations of solutes are constant 
and the initial concentration of T is uniform in the drop. Also 
assumed are negligible mass transfer resistance in the continuous 
phase and the dilute system for no cross effects between mass 
fluxes of the solutes so that binary mass transfer coefficients can 
be used to describe the system. The governing equations are; 

For region I (x<r<R) 

DA O {!I-~OCA] oC.~ 
r 2 0rL ~ - J : - ~ -  

D~ 0 ,  ,rr 0Col 0co 

D, 0 [FoC~] :OC: ,  
F Or L Or J Ot 

For region If (O<r<x) 

D-, O r [ F-~rrL ] = O~ " (2) 

and relevant initial and boundary conditions are; 

t=0 ;  C~=C~ . . . . . .  Cx=0, Cr=Q, ,  for r>0 
r - R ;  CA=C~,, CB-C~,, '", Cx-CN,,for t>0 
r = 0 ;  Cr= finite for-t>0 
r = x ;  C~=CB . . . . . .  Cr-O,  for t>0 (3) 

where C,'s and D/s are the concentrations and diffusivities of 
i, respectively; r is radius coordinate of the system measured 
from the drop center; R is drop radius; C, is the equilibrium 
concentration of j at the drop surface; C:~, is the initial concentra- 
tion of T; x is the distance from the drop center to the location 
of the reaction front. The following compatibility condition relating 
the fluxes of all components at r = x  should be satisfied: 

7~ NA § y~ N~ +- '"  + y.~ Nx= - Nr 

that is 

0C4 
Or 

YB Di~ oC// Yx oC.~' ~- ~...+ 
YA Da Or YA Or 

_ 1 Dr 0Cr (4) 
u 0.4 Or 

There is no analytical method to solve the above set of equations. 
A direct application of any numerical technique becomes very 
complicated because the reaction front is moving and given as 
a function of time. Several studies have been reported on the 
analogous problem-solidification of a liquid sphere initially at the 
fusion temperature [11-13]. Those studies used a singular pertur- 
bation technique to find an asymptotic solution of the moving-bound- 
ary problem. However, such a technique may not be appro- 
priate for the present problem which is more complicated. Instead, 
it is desired that the spherical coordinate be appropriately trans- 
formed in order to fix the reaction front. 

If the following coordinate variables are introduced, 

lD~- 9 - O  OKO-< 1 (5) 
1 - 0  

0 - p  lDlt- 0gp-<0 (6) 
0 

where p = fiR, 0 -  x/R 

the governing equations are transformed to contain the location 
of reaction front as follows: 

1 02CA* ~ 1--lDt dO 0CA* 0CA* 
(1--0) 2 0lDl 2 1- -0  dr 0co/ 0~: 

DBA 02C~* ~ 1--oh dO o C B *  0C~* 
(1 0) 2 0lDI ~ 1 O dr 0lD/ Or 

DXA 02Cx * 1-lDt dO 0Cx* _ 0C.~* 
4 

( 1 - 0 )  2 0r 1 0 dr OlDl Or 

Dla 02CI * I -1- tou  d o 0C-l* : 0 C ~ *  (7) 
0 ~ OlDu 2 0 dr OlDn Oz 

- -  CA 
where CA* = pCa P C.4, 

- C, 
C~* : pC. = pct~ C~ 

, - -  C . ~  

Cx = oC,~ = p a ~  

~t - -  CT 
Cr = pCr= O~T, 

_tDA _ Cj, and D,~= 
r -  R2 , ct~- C~'  

Accordingly, the initial and boundary conditions reduce to: 

r : 0 ;  CA*:C~* . . . .  Cs*=0, CT*=l -m/ /  for lD>0 
cog=l; CA *= I, CB*=a~,'"C~*=ctx, for r>0  
o~H=l; Cr*=0 for r>0  
lDl=lD//-0; CA*=C,* . . . . .  CT*=0, for r>0  (8) 

and the compatibility condition becomes 

OCA* + DBA YI~A 0CB* + ' "  + Dy4 y,~:4 0C~'_~* = 
OlDt Otol Ool 

D,~( 1 -  O_ t tiC,* (9) 
\ 0 j �9 01D// 

where u and 13=C~JyA CA,. 
Thus, the new coordinate variables, lDt and lD//, always have 

the values between 0 and 1, even if they are functions of 0- One 
way to numerically solve Eq. (7) with Eqs. (8) and (9) is to use 
linear finite elements for the two regions of I and II. 

C O M P U T A T I O N A L  M E T H O D  

The transformed governing equations will be numerically sol- 
ved using the usual Galerkin formula, which i,~ easy and economic 
to apply on a regular grid such as lD~ and lDu, over a fixed number 
of linear finite elements for the two regions in the drop. 

For a fixed time, i+  1, 0 is assumed and then, Eq. (7) is devel- 
oped into finite element equations, using the Galerkin's formula 
over the dimensionless distance grid and the lumped formulation 
followed by the backward difference method over dimensionless 
time grid. In order to solve the developed finite element equa- 
lions, a delicate part of computer code is required to update the 
nodal values of the previous time step, i, because the reaction 
front moves with time. The element equations are then combined 
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with the other element equations and summed over all the ele- 
ments using the Direct Stiffness Method [14]. The Gaussian elim- 
ination procedure is then used to solve the resulting set of 
equations. After solving equations for all components, the compat- 
ibility should be checked. If it is not satisfied, the Newton-Raph- 
son method is used for another guess of ~ and the process is 
repeated until the matching is satisfactory. 

The cumulative mass flux, ~ ,  and the enhancement factor, E,, 
of i can be obtained by integrating the produced concentration 
profiles with various parametric values as follows [153: 

(oct/ (lO) 
\ 0P /p=t.~.. 

30~ (11) 
E ' : i - 6  {2 le-"~'2~ 

Y[ ~ = t  f l  2 

The number of elements and the grid size in the directions of 
the dimensionless distance and time are chosen by trial and error 
for efficient convergence. Fig. 1. Variation of concentration profiles (I). 

R E S U L T S  AND DISCUSSION 

The developed mathematical models are simulated fi)r the case 
in which two gas components, A and B, are absorbed from the 
surrounding continuous phase into the liquid drop and react in- 
stantaneously with third reactant T, existing in the drop according 
to the following equations: 

A + yAT products 

B +'t 'sT products (12) 

The computational results, which were obtained by using of the 
Galerkin's formula, are presented in terms of concentration pro- 
files of all solutes in the drop, the reaction front position, the 
cumulative mass flux, and the enhancement factor of A. The dis- 
cussion on the calculated quantities of B is omitted because their 
trend might be similar to those of A, although they must have 
different numerical values. The maximum matching error for the 
compatibility condition is below 0.1%. 

The parametric studies are performed to evaluate the effects 
of the initial concentration ratio of T to A (13) and the diffusivity 
ratio of B and T to A (D~ and DrA, respectively). The ratio of 
stoichiometric coefficients of the two reactions is taken as unit3, 
for the simplicity of the calculation. 

Figs. 1 and 2 show the concentration profiles of solutes in the 
drop with different values of DzA and a, the interracial concentra- 
tion ratio of B to A, and constant DT"A as  a function of time and 
radius. In Fig. 1, we can see that when the diffusivities of all 
reactants are the same, T reacts with A and B simultaneously, 
regardless of the interfatial concentrations of A and B. However, 
Fig. 2 shows that when B diffuse slower than A, the reaction 
takes place mainly between A and T as the reaction proceeds, 
althoughthe same amount of A and B exists in the interface. Figs. 
3 and 4 show the progress of the reaction front with time at 
constant a. As can be seen in Fig. 3, larger 13 with :~maller D~4 
at constant diffusivity ratio, DrA, has a positive effect on the retar- 
dation of the reaction front, resulting in a sharper slope in a large 

time. 
In Fig. 4, we can also see that as T diffuses faster and B slower 

at constant 13, the reaction front initially moves slower and finally 

Fig. 2. Variation of concentration profiles (II). 

faster. This confirms that if the diffusivity of T is very high, most 
amount of T must react with A and B, and consequently disappear 
at early stage, resulting in no more reaction at later time. For 
slower diffusing B, the disappearance rate of T will be lower be- 
cause less amount of B diffuses and reacts with T. Therefore, 
the movement of the reaction front becomes slower for the entire 
reaction time. 

The cumulative amount of A absorbed through unit surface 
area of the drop, which is obtained by integral of the concentration 
profile of A, is shown in Figs. 5 and 6. Fig. 5 shows that as 13 
with smaller values of DsA increases at constant DTA, the more 
amount of A is absorbed. For constant 13 (Fig. 6), the faster diffus- 
ing T and the slower diffusing B cause the larger amount of A 
absorbed at a short time. However, the cumulative mass flux cur- 
ves with constant [3 and DsA tend toward the final limiting value 
no matter how fast T diffuses compared to A, and obviously the 
final limiting value increases as B moves slowly. 

Fig. 7 shows the enhancement factor of A, which is obtained 
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Fig. 3. Progress of  reaction front (1). Fig. 6. Variation of  cumulative mass flux of  A (ll) .  

Fig. 4. Progress of  reaction front (11). Fig. 7. Variation of  enhancement factor of  A (1). 

Fig. 5. Variation of  cumulative mass flux of  A (I). 

by Eq. (11), with dimensionless time at constant a and DrA. As 
expected, the larger [3 is and the slower B diffuses, the larger 
is the enhancement factor of A, if A and T move at the same 
diffusion rate. The effect of the slower moving B on the enhance- 
ment factor of A becomes obvious for larger time and !3. All curves 
appear to reach their own asymptotic values as time proceeds. 

The effect of the diffusivity ratio, D7:4, on the enhancement 
factor of A at constant 13 is shown in Fig. 8. The faster diffusing 
T compared to A results in the bigger enhancement factor of 
A at early stage. However, it becomes smaller after it reaches 
the maximum and approaches the final limiting value at final 
stage. This trend can be understood based on general considera- 
tions; A diffuses so fast at early stage due to the instantaneous 
reaction with the fast moving T and consequently most of T dis- 
appears during this period. Thereafter, there is only physical ab- 
sorption because there is no more reaction in the drop. For slow 
moving T (DrA=0.1), the curve remains constant for a while at 
early stage and gradually approaches the limiting value at final 
stage. The effect of the slower diffusing B compared to A becomes 
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Fig. 8. Variation of enhancement factor of A (II). 

obvious with larger value of DrA. As expected, the final limiting 
value increases as B moves slow and is independent upon the 
diffusivity ratio of T to A. The effect of a is not discussed because 
it is likely to be replaced with the effect of DaA, the diffusivity 
ratio of B to A. 

CONCLUSIONS 

Dilute multicomponent mass transfer with instantaneous chem- 
ical reactions in a small drop was modeled and simulated for 
the case of absorption of two solutes and their reactions with 
one component existing in the drop. After an appropriate coordi- 
nate transformation in order to fix the moving reaction front, the 
model was solved using the Galerkin's linear finite element meth- 
od. The calculated results were presented in terms of the concen- 
tration profiles, the progress of the reaction front, the cumulative 
mass flux, and the enhancement factor with different system pa- 
rameters. Parametric sensitivity studies showed the influences 
of the diffusivity ratios, the relative amount of the reactant in 
the drop, and the interfacial concentration of the diffusing solutes. 
The effects of those system parameters are in agreement with 
the general physical considerations; (1) the larger anaount of the 
reactant in the drop causes the larger amount of solutes absorbed, 
and (2) the faster reactant in the drop moves, the faster solutes 
are absorbed from the surrounding fluid-approaching the final 
asymptotic value which is independent on the diffusion rates of 
solutes and the reactant. 

N O M E N C L A T U R E  

A, B, T : solutes and reactant 

Ci :concentration of i 
Ci :dimensionless concentration of i 
C,* :transformed concentrations of i 
Cj, :concentration of j at drop surface 
CTo :initial concentration of T in a drop 
D,~ : diffusivity ratio, Di/'D: 
El :enhancement factor of i 
Q~ :cumulative mass flux of i 

Greek  
% 

B 
Ti 
Tij 
P 

0 
(.OI, O)ll 

Let ters  
: Cj,/C,,, 
: Cro/yT~ CA 
:ratio of stoichiometric coefficients of T to i 
:ratio of stoichiometric coefficients, "O,/Yri 
:dimensionless radial position, r/R 
:dimensionless time, tDa/R 2 
:dimensionless position of reaction front, x/R 
:transformed coordinate variables. 
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